Organization of the BcgI restriction–modification protein for the transfer of one methyl group to DNA

نویسندگان

  • Rachel M. Smith
  • Alistair J. Jacklin
  • Jacqueline J. T. Marshall
  • Frank Sobott
  • Stephen E. Halford
چکیده

The Type IIB restriction-modification protein BcgI contains A and B subunits in a 2:1 ratio: A has the active sites for both endonuclease and methyltransferase functions while B recognizes the DNA. Like almost all Type IIB systems, BcgI needs two unmethylated sites for nuclease activity; it cuts both sites upstream and downstream of the recognition sequence, hydrolyzing eight phosphodiester bonds in a single synaptic complex. This complex may incorporate four A(2)B protomers to give the eight catalytic centres (one per A subunit) needed to cut all eight bonds. The BcgI recognition sequence contains one adenine in each strand that can be N(6)-methylated. Although most DNA methyltransferases operate at both unmethylated and hemi-methylated sites, BcgI methyltransferase is only effective at hemi-methylated sites, where the nuclease component is inactive. Unlike the nuclease, the methyltransferase acts at solitary sites, functioning catalytically rather than stoichiometrically. Though it transfers one methyl group at a time, presumably through a single A subunit, BcgI methyltransferase can be activated by adding extra A subunits, either individually or as part of A(2)B protomers, which indicates that it requires an assembly containing at least two A(2)B units.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catal...

متن کامل

TstI, a Type II restriction–modification protein with DNA recognition, cleavage and methylation functions in a single polypeptide

Type II restriction-modification systems cleave and methylate DNA at specific sequences. However, the Type IIB systems look more like Type I than conventional Type II schemes as they employ the same protein for both restriction and modification and for DNA recognition. Several Type IIB proteins, including the archetype BcgI, are assemblies of two polypeptides: one with endonuclease and methyltr...

متن کامل

Substrate DNA and cofactor regulate the activities of a multi-functional restriction-modification enzyme, BcgI.

The BcgI restriction-modification system consists of two subunits, A and B. It is a bifunctional protein complex which can cleave or methylate DNA. The regulation of these competing activities is determined by the DNA substrates and cofactors. BcgI is an active endonuclease and a poor methyltransferase on unmodified DNA substrates. In contrast, BcgI is an active methyltransferase and an inactiv...

متن کامل

Concerted action at eight phosphodiester bonds by the BcgI restriction endonuclease

The BcgI endonuclease exemplifies a subset of restriction enzymes, the Type IIB class, which make two double-strand breaks (DSBs) at each copy of their recognition sequence, one either side of the site, to excise the sequence from the remainder of the DNA. In this study, we show that BcgI is essentially inactive when bound to a single site and that to cleave a DNA with one copy of its recogniti...

متن کامل

P-128: The Effect of DNA Methyl Transferase1 Inhibitor (RG108) on DNA Methylation Pattern of Cloned Mouse Embryos

Background: In somatic cell nuclear transfer (SCNT) method of cloning, transferred nucleus should be dedifferentiated from differentiated state to embryonic state. Molecular analysis showed that the reprogramming in the transferred nucleus was incomplete and cloned embryos have epigenetic abnormalities such as high DNA methylations levels. Since methylation in pre-implantation embryos has a cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013